top of page

Beehive Strong Group

Public·17 members
Luca White
Luca White

Spider Curtain Wall Pdf 15



A curtain wall is an outer covering of a building in which the outer walls are non-structural, utilized only to keep the weather out and the occupants in. Since the curtain wall is non-structural, it can be made of lightweight materials, such as glass, thereby potentially reducing construction costs. An additional advantage of glass is that natural light can penetrate deeper within the building. The curtain wall façade does not carry any structural load from the building other than its own dead load weight. The wall transfers lateral wind loads that are incident upon it to the main building structure through connections at floors or columns of the building. A curtain wall is designed to resist air and water infiltration, absorb sway induced by wind and seismic forces acting on the building, withstand wind loads, and support its own weight.




spider curtain wall pdf 15


Download File: https://www.google.com/url?q=https%3A%2F%2Ftinourl.com%2F2u2YVv&sa=D&sntz=1&usg=AOvVaw0MvkNZJoB-wYIBDs-zNyMl



Curtain walls may be designed as "systems" integrating frame, wall panel, and weatherproofing materials. Steel frames have largely given way to aluminum extrusions, typically infilled with glass, which provides an architecturally pleasing look and benefits such as daylighting. However, the effects of light on visual comfort as well as solar heat gain in a building are more difficult to control when using large amounts of glass infill. Other common infills include stone veneer, metal panels, louvres, and operable windows or vents.


Curtain wall systems differ from storefront systems in being designed to span multiple floors, taking into consideration building sway and movement in addition to design requirements such as thermal expansion and contraction; seismic requirements; water diversion; and thermal efficiency for cost-effective heating, cooling, and interior lighting.


Historically, buildings were constructed of timber, masonry, or a combination of both. Their exterior walls were load bearing, supporting much or all of the load of the entire structure. The nature of the materials resulted in inherent limits to a building's height and the maximum size of window openings.


The development and widespread use of structural steel and later reinforced concrete allowed relatively small columns to support large loads. The exterior walls could be non-load bearing, and thus much lighter and more open than load-bearing walls of the past. This gave way to increased use of glass as an exterior façade, and the modern-day curtain wall was born.


Post and beam and balloon framed timber structures effectively had an early version of curtain walls, as their frames supported loads that allowed the walls themselves to serve other functions, such as keeping weather out and allowing light in. When iron began to be used extensively in buildings in late 18th-century Britain, such as at Ditherington Flax Mill, and later when buildings of wrought iron and glass such as The Crystal Palace were built, the building blocks of structural understanding were laid for the development of curtain walls.


Oriel Chambers (1864) and 16 Cook Street (1866), both built in Liverpool, England, by local architect and civil engineer Peter Ellis, are characterised by their extensive use of glass in their facades. Towards the courtyards they even boasted metal-framed glass curtain walls, which makes them two of the world's first buildings to include this architectural feature.[1] The extensive glass walls allowed light to penetrate further into the building, utilizing more floor space and reducing lighting costs. Oriel Chambers comprises 43,000 sq ft (4,000 m2) set over five floors without an elevator, which had only recently been invented and was not yet widespread.[2] The Statue of Liberty (1886) features a thin, non-load-bearing copper skin.


An early example of an all-steel curtain wall used in the classical style is the Kaufhaus Tietz department store on Leipziger Straße, Berlin, built in 1901 (since demolished).[3]


Some of the first curtain walls were made with steel mullions, and the polished plate glass was attached to the mullions with asbestos- or fiberglass-modified glazing compound. Eventually silicone sealants or glazing tape were substituted for the glazing compound. Some designs included an outer cap to hold the glass in place and to protect the integrity of the seals. The first curtain wall installed in New York City, in the United Nations Secretariat Building (Skidmore, Owings, and Merrill, 1952), was this type of construction. Earlier modernist examples are the Bauhaus in Dessau (1926) and the Hallidie Building in San Francisco (1918).


During the 1970s, the widespread use of aluminium extrusions for mullions began. Aluminum alloys offer the unique advantage of being able to be easily extruded into nearly any shape required for design and aesthetic purposes. Today, the design complexity and shapes available are nearly limitless. Custom shapes can be designed and manufactured with relative ease. The Omni San Diego Hotel curtain wall in California, designed by architectural firm Hornberger and Worstel and developed by JMI Realty, is an example of a unitized curtain-wall system with integrated sunshades.[4]


The vast majority of ground-floor curtain walls are installed as long pieces (referred to as sticks) between floors vertically and between vertical members horizontally. Framing members may be fabricated in a shop, but installation and glazing is typically performed at the jobsite.


Very similar to a stick system, a ladder system has mullions which can be split and then either snapped or screwed together consisting of a half box and plate. This allows sections of curtain wall to be fabricated in a shop, effectively reducing the time spent installing the system on site. The drawbacks of using such a system is reduced structural performance and visible joint lines down the length of each mullion.


Unitized curtain walls entail factory fabrication and assembly of panels and may include factory glazing. These completed units are installed on the building structure to form the building enclosure. Unitized curtain wall has the advantages of: speed; lower field installation costs; and quality control within an interior climate-controlled environment. The economic benefits are typically realized on large projects or in areas of high field labor rates.


A common feature in curtain wall technology, the rainscreen principle theorizes that equilibrium of air pressure between the outside and inside of the "rainscreen" prevents water penetration into the building. For example, the glass is captured between an inner and an outer gasket in a space called the glazing rebate. The glazing rebate is ventilated to the exterior so that the pressure on the inner and outer sides of the outer gasket is the same. When the pressure is equal across this gasket, water cannot be drawn through joints or defects in the gasket.


Dead load is defined as the weight of structural elements and the permanent features on the structure.[5] In the case of curtain walls, this load is made up of the weight of the mullions, anchors and other structural components of the curtain wall, as well as the weight of the infill material. Additional dead loads imposed on the curtain wall may include sunshades or signage attached to the curtain wall.


Wind load is a normal force acting on the building as the result of wind blowing on the building.[6] Wind pressure is resisted by the curtain wall system since it envelops and protects the building. Wind loads vary greatly throughout the world, with the largest wind loads being near the coast in hurricane-prone regions. For each project location, building codes specify the required design wind loads. Often, a wind tunnel study is performed on large or unusually-shaped buildings. A scale model of the building and the surrounding vicinity is built and placed in a wind tunnel to determine the wind pressures acting on the structure in question. These studies take into account vortex shedding around corners and the effects of surrounding topography and buildings.


Seismic loads in curtain wall system are limited to the interstory drift induced on the building during an earthquake. In most situations, the curtain wall is able to naturally withstand seismic and wind induced building sway because of the space provided between the glazing infill and the mullion. In tests, standard curtain wall systems are typically able to withstand up to three inches (75 mm) of relative floor movement without glass breakage or water leakage.


Snow loads and live loads are not typically an issue in curtain walls, since curtain walls are designed to be vertical or slightly inclined. If the slope of a wall exceeds 20 degrees or so, these loads may need to be considered.[7]


Thermal loads are induced in a curtain wall system because aluminum has a relatively high coefficient of thermal expansion. This means that over the span of a couple of floors, the curtain wall will expand and contract some distance, relative to its length and the temperature differential. This expansion and contraction is accounted for by cutting horizontal mullions slightly short and allowing a space between the horizontal and vertical mullions. In unitized curtain wall, a gap is left between units, which is sealed from air and water penetration by gaskets. Vertically, anchors carrying wind load only (not dead load) are slotted to account for movement. Incidentally, this slot also accounts for live load deflection and creep in the floor slabs of the building structure.


Accidental explosions and terrorist threats have brought on increased concern for the fragility of a curtain wall system in relation to blast loads. The bombing of the Alfred P. Murrah Federal Building in Oklahoma City, Oklahoma, has spawned much of the current research and mandates in regards to building response to blast loads. Currently, all new federal buildings in the U.S. and all U.S. embassies built on foreign soil must have some provision for resistance to bomb blasts.[8]


About

Welcome to the group! You can connect with other members, ge...
bottom of page