top of page

Angina/Ischemia w/Exercise:

  • Paul, S. D., Orav, E. J., Gleason, R. E., & Nesto, R. W. (1994). Use of exercise test parameters to predict presence and duration of ambulatory ischemia in patients with coronary artery disease. The American Journal of Cardiology, 74(10), 991–996. https://doi.org/10.1016/0002-9149(94)90846-x

  • Huang, Y., Liu, H.-T., Yuan, Y., Guo, Y.-P., Wan, D.-F., & Pan, S.-S. (2021). Exercise preconditioning increases beclin1 and induces autophagy to promote early myocardial protection via intermittent myocardial ischemia-hypoxia. International Heart Journal, 62(2), 407–415. https://doi.org/10.1536/ihj.20-597

  • Tomai, F., Perino, M., Ghini, A. S., Crea, F., Gaspardone, A., Versaci, F., Chiariello, L., & Gioffrè, P. A. (1999). Exercise-induced myocardial ischemia triggers the early phase of preconditioning but not the late phase. The American Journal of Cardiology, 83(4), 586–588, A7-8. https://doi.org/10.1016/s0002-9149(98)00918-7

  • Quyyumi, A. A., Panza, J. A., Diodati, J. G., Callahan, T. S., Bonow, R. O., & Epstein, S. E. (1993). Prognostic implications of myocardial ischemia during daily life in low risk patients with coronary artery disease. Journal of the American College of Cardiology, 21(3), 700–708. https://doi.org/10.1016/0735-1097(93)90103-8

  • Powers, S. K., Smuder, A. J., Kavazis, A. N., & Quindry, J. C. (2014). Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda, Md.), 29(1), 27–38. https://doi.org/10.1152/physiol.00030.2013

  • Hassan, M., York, K. M., Li, Q., Lucey, D. G., Fillingim, R. B., & Sheps, D. S. (2008). Variability of myocardial ischemic responses to mental versus exercise or adenosine stress in patients with coronary artery disease. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 15(4), 518–525. https://doi.org/10.1016/j.nuclcard.2008.04.005

  • Budiono, B. P., See Hoe, L. E., Peart, J. N., Vider, J., Ashton, K. J., Jacques, A., Haseler, L. J., & Headrick, J. P. (2021). Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sciences, 274, 119253. https://doi.org/10.1016/j.lfs.2021.119253

  • Yamagishi, H., Yoshiyama, M., Shirai, N., Akioka, K., Takeuchi, K., & Yoshikawa, J. (2005). Protective effect of high diastolic blood pressure during exercise against exercise-induced myocardial ischemia. American Heart Journal, 150(4), 790–795. https://doi.org/10.1016/j.ahj.2004.11.007

  • Longobardi, G., Abete, P., Ferrara, N., Papa, A., Rosiello, R., Furgi, G., Calabrese, C., Cacciatore, F., & Rengo, F. (2000). “Warm-up” phenomenon in adult and elderly patients with coronary artery disease: Further evidence of the loss of “ischemic preconditioning” in the aging heart. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 55(3), M124-129. https://doi.org/10.1093/gerona/55.3.m124

  •  

 

 

Coronary Artery Bypass Graft:

Failure:

Heart Rate (bpm):

Heart Rate Variability:

Rupture:

  1. (1987) Rupture of a saphenous vein bypass graft during coronary angioplasty. Br Heart J 58:78–81. Abstract/FREE Full TextGoogle Scholar

  2. (1996) Spontaneous dissection of the left main coronary artery: a case report and review of the literature. J Card Surg 11:371–375. PubMedWeb of ScienceGoogle Scholar

  3. (1993) Spontaneous coronary artery dissection: a report of three cases and review of the literature. Postgrad Med J 69:940–945. Abstract/FREE Full TextGoogle Scholar

  4. (1998) Aneursyms and pseudoaneurysms of saphenous artery bypass grafts. Heart 79:505–508. Abstract/FREE Full TextGoogle Scholar

  5. (1983) Rupture of a coronary bypass graft aneurysm: CT evaluation and coil occlusion therapy. AJR 141:1060–1062. PubMedWeb of ScienceGoogle Scholar

  6. (1991) Spontaneous, late rupture of an aortocoronary saphenous vein graft. Ann Thorac Surg 51:664–666. CrossRefPubMedWeb of ScienceGoogle Scholar

  7. (1986) Rupture of an aortocoronary saphenous vein graft aneurysm. Am J Cardiol 58:555–557. CrossRefPubMedWeb of ScienceGoogle Scholar

  8. (1993) Pseudoaneurysm of aortocoronary vein graft secondary to late venous rupture: case report and literature review. Br Heart J 70:189–192. Abstract/FREE Full TextGoogle Scholar

  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957087/

  10. https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks/coronary-artery-dissection-not-just-a-heart-attack

Cardiac Rehabilitation:

  • Pack, Q. R., Johnson, L. L., Barr, L. M., Daniels, S. R., Wolter, A. D., Squires, R. W., Perez-Terzic, C. M., & Thomas, R. J. (2013). Improving cardiac rehabilitation attendance and completion through quality improvement activities and a motivational program. Journal of Cardiopulmonary Rehabilitation and Prevention, 33(3), 153–159. https://doi.org/10.1097/HCR.0b013e31828db386

  • Ritchey, M. D., Maresh, S., McNeely, J., Shaffer, T., Jackson, S. L., Keteyian, S. J., Brawner, C. A., Whooley, M. A., Chang, T., Stolp, H., Schieb, L., & Wright, J. (2020). Tracking cardiac rehabilitation participation and completion among medicare beneficiaries to inform the efforts of a national initiative. Circulation: Cardiovascular Quality and Outcomes, 13(1), e005902. https://doi.org/10.1161/CIRCOUTCOMES.119.005902

  • Ritchey, M. D., Maresh, S., McNeely, J., Shaffer, T., Jackson, S. L., Keteyian, S. J., Brawner, C. A., Whooley, M. A., Chang, T., Stolp, H., Schieb, L., & Wright, J. (2020). Tracking cardiac rehabilitation participation and completion among medicare beneficiaries to inform the efforts of a national initiative. Circulation: Cardiovascular Quality and Outcomes, 13(1), e005902. https://doi.org/10.1161/CIRCOUTCOMES.119.005902

  • CDC. (2020, April 22). Cardiac rehabilitation at a glance. Centers for Disease Control and Prevention. https://millionhearts.hhs.gov/data-reports/factsheets/cardiac.html

  • Effect of age and gender on heart rate recovery after submaximal exercise during cardiac rehabilitation in patients with angina pectoris, recent acute myocardial infarction, or coronary bypass surgery. (2003). The American Journal of Cardiology, 92(5), 600–603. https://doi.org/10.1016/S0002-9149(03)00733-1

  • Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. (2009). American Heart Journal, 158(6), 1031–1037. https://doi.org/10.1016/j.ahj.2009.10.003

  • Sequential assessment of exercise tolerance in heart transplantation compared with coronary artery bypass surgery after phase II cardiac rehabilitation. (1996). The American Journal of Cardiology, 77(9), 696–700. https://doi.org/10.1016/S0002-9149(97)89202-8

  •  

 

C-Reactive Protein:

Heart Failure:

  • Taylor, R. S. (n.d.). Exercise based rehabilitation for heart failure. Retrieved June 11, 2021, from https://core.ac.uk/reader/13096807?utm_source=linkout

  • Adamopoulos, S., Schmid, J.-P., Dendale, P., Poerschke, D., Hansen, D., Dritsas, A., Kouloubinis, A., Alders, T., Gkouziouta, A., Reyckers, I., Vartela, V., Plessas, N., Doulaptsis, C., Saner, H., & Laoutaris, I. D. (2014). Combined aerobic/inspiratory muscle training vs. Aerobic training in patients with chronic heart failure. European Journal of Heart Failure, 16(5), 574–582. https://doi.org/https://doi.org/10.1002/ejhf.70

  • Morris, J. H., & Chen, L. (2019). Exercise training and heart failure: A review of the literature. Cardiac Failure Review, 5(1), 57–61. https://doi.org/10.15420/cfr.2018.31.1

  • Antunes‐Correa, L. M., Trevizan, P. F., Bacurau, A. V. N., Ferreira‐Santos, L., Gomes, J. L. P., Urias, U., Oliveira, P. A., Alves, M. J. N. N., de Almeida, D. R., Brum, P. C., Oliveira, E. M., Hajjar, L., Kalil Filho, R., & Negrão, C. E. (2020). Effects of aerobic and inspiratory training on skeletal muscle microRNA‐1 and downstream‐associated pathways in patients with heart failure. Journal of Cachexia, Sarcopenia and Muscle, 11(1), 89–102. https://doi.org/10.1002/jcsm.12495

  • Laoutaris, I. D. (2018). The “aerobic/resistance/inspiratory muscle training hypothesis in heart failure.” European Journal of Preventive Cardiology, 25(12), 1257–1262. https://doi.org/10.1177/2047487318776097

  • Laoutaris, I. D., Dritsas, A., Brown, M. D., Manginas, A., Kallistratos, M. S., Chaidaroglou, A., Degiannis, D., Alivizatos, P. A., & Cokkinos, D. V. (2008). Effects of inspiratory muscle training on autonomic activity, endothelial vasodilator function, and N-terminal pro-brain natriuretic peptide levels in chronic heart failure. Journal of Cardiopulmonary Rehabilitation and Prevention, 28(2), 99–106. https://doi.org/10.1097/01.HCR.0000314203.09676.b9

  • Arslan, S., Erol, M. K., Gundogdu, F., Sevimli, S., Aksakal, E., Senocak, H., & Alp, N. (2007). Prognostic value of 6-minute walk test in stable outpatients with heart failure. Texas Heart Institute Journal, 34(2), 166–169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894714/

  •  

Heart Rate:

Myocardial Infarction:

  • Prognostic significance of impairment of heart rate response to exercise: Impact of left ventricular function and myocardial ischemia. (2003). Journal of the American College of Cardiology, 42(5), 823–830. https://doi.org/10.1016/S0735-1097(03)00832-5

  • Andrews, T. C., Fenton, T., Toyosaki, N., Glasser, S. P., Young, P. M., MacCallum, G., Gibson, R. S., Shook, T. L., & Stone, P. H. (1993). Subsets of ambulatory myocardial ischemia based on heart rate activity. Circadian distribution and response to anti-ischemic medication. The Angina and Silent Ischemia Study Group (Asis). Circulation, 88(1), 92–100. https://doi.org/10.1161/01.cir.88.1.92

  •  

  •  

 

Neurohormonal | Hemodynamics

  • Bilińska, M., Kosydar-Piechna, M., Mikulski, T., Piotrowicz, E., Gąsiorowska, A., Piotrowski, W., Nazar, K., & Piotrowicz, R. (2013). Influence of aerobic training on neurohormonal and hemodynamic responses to head-up tilt test and on autonomic nervous activity at rest and after exercise in patients after bypass surgery. Cardiology Journal, 20(1), 17–24. https://doi.org/10.5603/CJ.2013.0004

  •  

  •  

Rate Pressure Product (RPP):

  •  

S3 Auscultation & Exercise:

  • Kupari, M., Koskinen, P., Virolainen, J., Hekali, P., & Keto, P. (1994). Prevalence and predictors of audible physiological third heart sound in a population sample aged 36 to 37 years. Circulation, 89(3), 1189–1195. https://doi.org/10.1161/01.CIR.89.3.1189

  • Marcus, G., Vessey, J., Jordan, M. V., Huddleston, M., McKeown, B., Gerber, I. L., Foster, E., Chatterjee, K., McCulloch, C. E., & Michaels, A. D. (2006). Relationship between accurate auscultation of a clinically useful third heart sound and level of experience. Archives of Internal Medicine, 166(6), 617. https://doi.org/10.1001/archinte.166.6.617

  • Zhong L.-S., Guo X.-M., Xiao S.-Z., Wang D., & Wu W.-Z. (2011). The third heart sound after exercise in athletes: An exploratory study. The Chinese Journal of Physiology, 54(4), 219–224. https://doi.org/10.4077/CJP.2011.AMM049

Cardiac Risk & Exercise Participation:

  • Wilson, P. W. F., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847. https://doi.org/10.1161/01.CIR.97.18.1837

  • ACC/AHA 2002 guideline update for exercise testing: Summary article: A report of the American college of cardiology/American heart association task force on practice guidelines (Committee to update the 1997 exercise testing guidelines). (2002). Journal of the American College of Cardiology, 40(8), 1531–1540. https://doi.org/10.1016/S0735-1097(02)02164-2

bottom of page